Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise 18.22 Question 8 Maths Textbook Solution.

Answers (1)

Answer: \tan ^{-1}\left(\tan ^{2} x\right)+c

Given:  \int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x

Hint: Divide Numerator and denominator by \cos ^{4} x

Solution:

\int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x                        (\sin 2 x=2 \sin x \cos x)

=\int \frac{2 \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x

On dividing Numerator and denominator by \cos ^{4} x

=\int \frac{2 \tan x \cdot \sec ^{2} x d x}{\tan ^{4} x+1}

Let

\begin{aligned} &\tan ^{2} x=t \\ &2 \tan x \sec ^{2} x d x=d t \end{aligned}                            (Differentiate w.r.t x)

Now,\int \frac{1}{t^{2}+1} d t

=\tan ^{-1} t+c                                                              \left[\int \frac{d t}{t^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{t}{a}\right)+c\right]                                  

=\tan ^{-1}\left(\tan ^{2} x\right)+c                                        

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads