Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Indefinite Integrals exercise 18.8 question 38

Answers (1)

Answer:

        \frac{1}{b^{2}}log(a^{2}+b^{2}sin^{2}x)+C

Hint:

        Put denominator = t

Given:

        \int \! \frac{sin\, 2x}{a^{2}+b^{2}sin^{2}x}dx                ......(1)

Explanation:

Let

        a^{2}+b^{2}sin^{2}x=t

        b^{2}(2sin\, xcos\, x)dx=dt

        b^{2}sin\, 2xdx=dt

        sin\, 2xdx=\frac{dt}{b^{2}}

Put in (1) we get

        \int \! \frac{dt}{b^{2}(t)}

        =\frac{1}{b^{2}}\int \! \frac{dt}{t}

        =\frac{1}{b^{2}}log\left | t \right |+C

        =\frac{1}{b^{2}}log(a^{2}+b^{2}sin^{2}x)+C

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads