Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 72 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{2} \ln \left|\tan \frac{x}{2}\right|+\frac{1}{4} \tan ^{2} \frac{x}{2}+\tan \frac{x}{2}+C

Hint:

To solve the given statement multiply and divide the equation by sin x.

Given:

\int \frac{1+\sin x}{\sin x(1+\cos x)} d x

Solution:

I=\int \frac{(1+\sin x)}{\sin x(1+\cos x)} d x

\text { putting }

\sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}

\cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}

I=\int \frac{\left(1+\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)}{\frac{\left(2 \tan \frac{x}{2}\right)}{\left(1+\tan ^{2} \frac{x}{2}\right)}\left(1+\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)} d x

I=\int \frac{\left(1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right)\left(1+\tan ^{2} \frac{x}{2}\right)}{\left(2 \tan \frac{x}{2}\right)\left(1+\tan ^{2} \frac{x}{2}+1-\tan ^{2} \frac{x}{2}\right)} d x

=\frac{1}{4} \int \frac{\left(1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right) \sec ^{2} \frac{x}{2}}{\tan \frac{x}{2}} d x

\text { putting } \tan \frac{x}{2}=t

\Rightarrow \frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) d x=d t

\Rightarrow \sec ^{2}\left(\frac{x}{2}\right) d x=2 d t

I=\frac{1}{4} \int \frac{\left(1+t^{2}+2 t\right) \cdot(2 d t)}{t}

=\frac{1}{2} \int\left(\frac{1}{t}+t+2\right) d t

=\frac{1}{2}\left[\ln |t|+\frac{t^{2}}{2}+2 t\right]+C

=\frac{1}{2}\left[\ln \left|\tan \frac{x}{2}\right|+\frac{\tan ^{2}\left(\frac{x}{2}\right)}{2}+2 \tan \left(\frac{x}{2}\right)\right]+C\left[\because t=\tan \frac{x}{2}\right]

=\frac{1}{2} \ln \left|\tan \frac{x}{2}\right|+\frac{1}{4} \tan ^{2} \frac{x}{2}+\tan \frac{x}{2}+C

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads