Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise Question 63 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{\sqrt{3}} \ln \left|\frac{\sin x-\left(\frac{\sqrt{3}}{2}\right)}{\sin x+\left(\frac{\sqrt{3}}{2}\right)}\right|+c

Hint:

To solve this given statement we will write cos²x in terms of sin²x

Given:

\int \frac{\cos x}{\frac{1}{4}-\cos ^{2} x} d x

Solution:

\int \frac{\cos x}{\frac{1}{4}-\cos ^{2} x} d x

  I=\int \frac{\cos x}{\frac{1}{4}-\left(1-\sin ^{2} x\right)} d x

I=\int \frac{\cos x}{-\frac{3}{4}+\sin ^{2} x} d x

 

\sin x=t \quad d t=\cos x d x

\therefore I=\int \frac{d t}{t^{2}-\frac{3}{4}}

I=\int \frac{d t}{t^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}}

I=\frac{1}{2\left(\frac{\sqrt{3}}{2}\right)} \ln \left|\frac{t-\left(\frac{\sqrt{3}}{2}\right)}{t+\left(\frac{\sqrt{3}}{2}\right)}\right|+c

I=\frac{1}{\sqrt{3}} \ln \left|\frac{\sin x-\left(\frac{\sqrt{8}}{2}\right)}{\sin x+\left(\frac{\sqrt{8}}{2}\right)}\right|+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads