Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 18 Indefinite Integrals Excercise Very Short Answers Question 6

Answers (1)

Answer:

\frac{\tan^{7}x}{7}+c

Hint: You must know about the integration rule of tan and sec function

Given: \int \tan^{6}x \sec^{2 }xdx

Solution: Suppose \tan x=t  differentiate both sides,               \left [\frac{d}{dx}\tan x= sec^{2} x \right ]

\begin{aligned} &\operatorname{sec}^{2}x d x=d t \\ &=\int t^{6} d t \\ &=\frac{t^{7}}{7}+c \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\left[\int x^{n} d x=\frac{x^{n+1}}{n+1}\right] \\ &=\frac{\tan ^{7} x}{7}+c \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads