Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise  Revision Exercise Question 34 Maths Textbbok Solution.

Answers (1)

Answer:

I=\frac{(2 x+3)^{2}}{8}-\frac{3(2 x+3)^{1}}{4}+c

Given:

\int x \sqrt{2 x+3} d x

Hint

 To solve the statement we have to put root statement to \mathrm{t}: \sqrt{2 x+3}=t

Solution: 

   \sqrt{2 x+3}=t

    put 2 x+3=t^{2}=>x=\frac{t^{2}-3}{2}

   2 d x=2 t d t

   d x=t d t

   I=\int \frac{t^{2}-3}{2} t d t

   I=\frac{1}{2} \int\left(t^{2}-3\right) t d t

   I=\frac{1}{2} \int\left(t^{3}-3 t\right) d t  

   I=\frac{1}{2}\left(\frac{t^{4}}{4}-\frac{3 t^{2}}{2}\right)

   I=\frac{t^{4}}{8}-\frac{3 t^{2}}{4}+c

   I=\frac{(2 x+3)^{2}}{8}-\frac{3(2 x+3)^{4}}{4}+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads