Get Answers to all your Questions

header-bg qa

Provide Solution For R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 104 Maths Textbook Solution.

Answers (1)

Answer: \frac{3}{2} \sin ^{-1} x-\frac{x}{2} \sqrt{1-x^{2}}+c

Hint: to solve this equation we have to solve this by splitting the team

Given:

                      I=\int \frac{1+x^{2}}{\sqrt{1-x^{2}}} d x

Solution:

\operatorname{Let} I=\int \frac{2-\left(1-x^{2}\right)}{\sqrt{1-x^{2}}} d x

I=\int \frac{2}{\sqrt{1-x^{2}}} d x-\int \frac{1-x^{2}}{\sqrt{1-x^{2}}} d x

I=\int \frac{2}{\sqrt{1-x^{2}}} d x-\int \sqrt{1-x^{2}} d x

I=2 \sin ^{-1} x-\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]+c .

                      \left\{\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\frac{1}{a} \sin ^{-1} \frac{x}{a} \& \int \sqrt{a^{2}-x^{2}} d x=\frac{a}{2} \sqrt{a^{2}-x^{2}}+\frac{1}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right\}

I=2 \sin ^{-1} x-\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \sin ^{-1} x+c

I=\frac{3}{2} \sin ^{-1} x-\frac{x}{2} \sqrt{1-x^{2}}+c 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads