Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise 18.25 Question 54 Maths Textbook Solution.

Answers (2)

Answer: -\frac{3}{2} \sqrt{x} \cos \sqrt{x}+\frac{3}{2} \sin \sqrt{x}+\frac{1}{6}\left[\sqrt{x} \cos 3 \sqrt{x}-\frac{\sin 3 \sqrt{x}}{3}\right]+c

Hint: Put \sqrt{x}=t

Given: \int \sin ^{3}\sqrt{xdx}

Solution: Put

                   \sqrt{x}=t\Rightarrow \frac{1}{2\sqrt{x}}=\frac{dt}{dx}

                   \Rightarrow dx=2tdt

            \begin{aligned} &\therefore \int \sin ^{3} \sqrt{x} d x=2 \int t \sin ^{3} t d t \\ &{\left[\begin{array}{l} \therefore \sin 3 t=3 \sin t-4 \sin ^{3} t \\ \sin ^{3} t=\frac{3 \sin t-\sin 3 t}{4} \end{array}\right]} \\ &\Rightarrow 2 \int \frac{t[3 \sin t-\sin 3 t]}{4} d t \\ &\Rightarrow \frac{3}{2} \int t \sin t d t-\frac{1}{2} \int t \sin 3 t d t \end{aligned}

Applying by parts,

                \begin{aligned} &=\frac{3}{2}\left[t(-\cos t)-\int(-\cos t) d t\right]-\frac{1}{2}\left[t\left(\frac{-\cos 3 t}{3}\right)-\int\left(\frac{-\cos 3 t}{3}\right) d t\right] \\ &=\frac{3}{2}[-t \cos t+\sin t]-\frac{1}{2}\left[\frac{-t \cos 3 t}{3}+\frac{1}{3} \frac{\sin 3 t}{3}\right]+c \\ &=-\frac{3}{2} \sqrt{x} \cos \sqrt{x}+\frac{3}{2} \sin \sqrt{x}+\frac{1}{6}\left[\sqrt{x} \cos 3 \sqrt{x}-\frac{\sin 3 \sqrt{x}}{3}\right]+c \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Answer: -\frac{3}{2} \sqrt{x} \cos \sqrt{x}+\frac{3}{2} \sin \sqrt{x}+\frac{1}{6}\left[\sqrt{x} \cos 3 \sqrt{x}-\frac{\sin 3 \sqrt{x}}{3}\right]+c

Hint: Put \sqrt{x}=t

Given: \int \sin ^{3}\sqrt{xdx}

Solution: Put

                   \sqrt{x}=t\Rightarrow \frac{1}{2\sqrt{x}}=\frac{dt}{dx}

                   \Rightarrow dx=2tdt

            \begin{aligned} &\therefore \int \sin ^{3} \sqrt{x} d x=2 \int t \sin ^{3} t d t \\ &{\left[\begin{array}{l} \therefore \sin 3 t=3 \sin t-4 \sin ^{3} t \\ \sin ^{3} t=\frac{3 \sin t-\sin 3 t}{4} \end{array}\right]} \\ &\Rightarrow 2 \int \frac{t[3 \sin t-\sin 3 t]}{4} d t \\ &\Rightarrow \frac{3}{2} \int t \sin t d t-\frac{1}{2} \int t \sin 3 t d t \end{aligned}

Applying by parts,

                \begin{aligned} &=\frac{3}{2}\left[t(-\cos t)-\int(-\cos t) d t\right]-\frac{1}{2}\left[t\left(\frac{-\cos 3 t}{3}\right)-\int\left(\frac{-\cos 3 t}{3}\right) d t\right] \\ &=\frac{3}{2}[-t \cos t+\sin t]-\frac{1}{2}\left[\frac{-t \cos 3 t}{3}+\frac{1}{3} \frac{\sin 3 t}{3}\right]+c \\ &=-\frac{3}{2} \sqrt{x} \cos \sqrt{x}+\frac{3}{2} \sin \sqrt{x}+\frac{1}{6}\left[\sqrt{x} \cos 3 \sqrt{x}-\frac{\sin 3 \sqrt{x}}{3}\right]+c \end{aligned}

Posted by

infoexpert21

View full answer