Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise 18.3 Question 6 Maths Textbook Solution.

Answers (1)

Answer: \frac{1}{18}\left\{(2 x+3)^{\frac{3}{2}}-(2 x-3)^{\frac{8}{2}}\right\}+c

Hint:\text { To solve this equation we multiply } \sqrt{2 x+3}-\sqrt{2 x-3} \text { to numerator and denominator }

Given: \int \frac{1}{\sqrt{2 x+3}+\sqrt{2 x-3}} d x

Solution: \int \frac{1}{\sqrt{2 x+3}+\sqrt{2 x-3}} d x

\int \frac{\sqrt{2 x+3}-\sqrt{2 x-3}}{(\sqrt{2 x+3}+\sqrt{2 x-3})(\sqrt{2 x+3}-\sqrt{2 x-3})} d x

\because \text { multiply } \sqrt{2 x+3}-\sqrt{2 x-3} \text { to numerator and denominator }

\begin{aligned} &=\int \frac{\sqrt{2 x+3}-\sqrt{2 x-3}}{2 x+3-2 x+3} d x \\ &=\frac{1}{6} \int \sqrt{2 x+3} d x-\int \sqrt{2 x-3} d x\left[\int(a x+b)^{n}=\frac{(a x+b)^{n+1}}{a(n+1)}+c, n \neq 1\right] \\ &=\frac{1}{6}\left[\frac{1}{2} \frac{(2 x+3)^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{(2 x-3)^{\frac{1}{2}+1}}{2\left(\frac{1}{2}+1\right)}+c\right] \\ &=\frac{1}{18}\left\{(2 x+3)^{\frac{3}{2}}-(2 x-3)^{\frac{8}{2}}\right\}+c \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads