Get Answers to all your Questions

header-bg qa

Explain Solution R.D Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Multiple Choice Questions Question 41 Maths Textbook Solution.

Answers (1)

Answer:

\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|

Given:

\int \frac{1}{\sin (x-a) \sin (x-b)} d x

Hint:

Using  \sin (x-y)=\sin x \cos y-\cos x \sin y \text { and } \int \frac{1}{x} d x

Explanation:

Let I=\int \frac{1}{\sin (x-a) \sin (x-b)} d x

         =\frac{1}{\sin (b-a)} \int \frac{\sin (b-a)}{\sin (x-a) \sin (x-b)} d x \ldots \ldots \text { multiplying by } \sin (b-a) \text { in num.\& den. }

         =\frac{1}{\sin (b-a)} \int \frac{\sin ((x-a)-(x-b))}{\sin (x-a) \sin (x-b)} d x                                                [\sin (x-y)=\sin x \cos y-\cos x \sin y]

         \begin{aligned} &=\frac{1}{\sin (b-a)} \int \frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)} d x\\ &=\frac{1}{\sin (b-a)}\left[\int \frac{\cos (x-b)}{\sin (x-b)} d x-\int \frac{\cos (x-a)}{\sin (x-a)}\right] d x\\ &=\frac{1}{\sin (b-a)}[\log |\sin (x-b)|-\log |\sin (x-a)|]+C \end{aligned}

         =\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|                                                            \left[\because \log a-\log b=\log \frac{a}{b}\right]

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads