Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Multiple Choice Questions Question 42 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{3} e^{x^{3}}+C

Given:

\int x^{2} e^{x^{3}} d x

Hint:

Using \int e^{x} d x

Explanation:

Let I=\int x^{2} e^{x^{3}} d x

        =\int e^{t} \cdot \frac{d t}{3}                                                                                \text { [Put } \left.x^{3}=t \Rightarrow 3 x^{2} d x=d t \Rightarrow x^{2} d x=\frac{d t}{3}\right]

       \begin{aligned} &=\frac{1}{3} e^{t}+C \\ &=\frac{1}{3} e^{x^{3}}+C \end{aligned}                                                                            \left[\because \int e^{x} d x=e^{x}+C\right]

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads