Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 102 Maths Textbook Solution.

Answers (1)

Answer:-2 \sqrt{1-x}-\frac{2}{5}(1-x)^{5 / 2}+\frac{4}{3}(1-x)^{3 / 2}+c

Hint: to solve this question we have to use differentiate method

Given:

           \int \frac{x^{2}}{\sqrt{1-x}} d x

Solution:

\text { Let } 1-x=t

x=1-t

\text { differentiating on both sides, }

-d x=d t

d x=-d t

I=-\int \frac{(1-t)^{2}}{\sqrt{t}} d t

I=-\int \frac{1+t^{2}-2 t}{\sqrt{t}} d t

I=-\int \frac{1}{\sqrt{t}} d t-\int \frac{t^{2}}{\sqrt{t}} d t+\int \frac{2 t}{\sqrt{t}} d t

I=-\int t^{-1 / 2} d t-\int \frac{t \sqrt{t} \sqrt{t}}{\sqrt{t}} d t+2 \int \sqrt{t} d t

I=-\left(\frac{t^{1 / 2}}{1 / 2}\right)-\int t^{3 / 2} d t+2 \frac{t^{3 / 2}}{3 / 2}

I=-2 \sqrt{t}-\frac{t^{3 / 2+1}}{3 / 2+1}+2 x \frac{2}{3}-t^{3 / 2}+c

I=-2 \sqrt{t}-\frac{t^{5 / 2}}{5 / 2}+\frac{4}{3} t^{3 / 2}+c

I=-2 \sqrt{1-x}-\frac{2}{5}(1-x)^{5 / 2}+\frac{4}{3}(1-x)^{3 / 2}+c

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads