Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 106 Maths Textbook Solution.

Answers (1)

Answer: I=\frac{1}{3} \log \left|\frac{\sqrt{1+x^{8}}-1}{\sqrt{1+x^{8}+1}}\right|+c

Hint: to solve this equation we have to do with differentiate method.

Given: \int \frac{1}{x \sqrt{1+x^{3}}} d x

Solution:

x^{3}=t

3 x^{2} d x=d t

x^{2} d x=\frac{1}{3} d t

I=\int \frac{x^{2}}{x^{3} \sqrt{1+x^{3}}} d x

I=\frac{1}{3} \int \frac{d t}{t \sqrt{1+t}}

\text { Let } 1+\mathrm{t}=\mathrm{p}^{2} \text { , } \mathrm{dt}=2 \mathrm{pdp}

I=\frac{1}{3} \int \frac{2 p d p}{\left.p^{2}-1\right) p}

I=\frac{2}{3} \int \frac{d p}{\left(p^{2}-1\right)}

\frac{2}{3} \times \frac{1}{3} \times \frac{1}{2} \log \left[\frac{p-1}{p+1}\right]+C \quad\left[\frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left[\frac{x-a}{x+a}\right]+C\right]

I=\frac{1}{3} \log \left|\frac{\sqrt{1+x^{3}}-1}{\sqrt{1+x^{3}}+1}\right|+c

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads