Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 24 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{\sin (\mathrm{a}-\mathrm{b})} \log \left|\frac{\sin (\mathrm{x}-\mathrm{a})}{\sin (\mathrm{x}-\mathrm{b})}\right|+\mathrm{c}

Given:

\int \frac{1}{(\sin x-a) \sin (x-b)} d x

Hint:

To solve the statement we have to use formula such as sin(A-B).

Solution: 

\frac{1}{\sin (a-b)} \int \frac{\sin (a-b)}{\sin (x-a)(\sin (x-b))} d x

 =\frac{1}{\sin (a-b)} \int \frac{\sin [(x-b)-(x-a)]}{\sin (x-a)(\sin (x-b))} d x

 =\frac{1}{\sin (a-b)} \int \frac{\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)}{\sin (x-a)(\sin (x-b))} d x

 =\frac{1}{\sin (a-b)} \int \frac{\cos (x-a) d x}{\sin (x-a)}-\frac{\cos (x-b)}{\sin (x-b)} \mathrm{d} \mathrm{x}

 =\frac{1}{\sin (a-b)} \log |\sin (x-a)|-\log |\sin (x-b)|+c

 =\frac{1}{\sin (\mathrm{a}-\mathrm{b})} \log \left|\frac{\sin (x-\mathrm{a})}{\sin (x-\mathrm{b})}\right|+\mathrm{c}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads