Get Answers to all your Questions

header-bg qa

Explain Solution R.D Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 28 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{2} \tan ^{2} x-\log |\sec x|+c

Given:

\int \tan ^{3} x d x

Hint:

To solve this statement we have to change tan into sec form.

Solution: 

\int \tan ^{2} x \cdot \tan x d x

   \int\left(\sec ^{2} x-1\right) \tan x d x \quad\left(\tan ^{2} x=\sec ^{2} x-1\right)

\int \sec ^{2} x \tan x d x-\int \tan x d x

                                                

I_{1}=\int \sec ^{2} x \tan x d x                                                        \left[\because \tan x=t, \sec ^{2} x d x=d t, \int x^{n} d x=\frac{x^{n+1}}{n+1}\right]

I_{1}=\int t d t

       =\frac{t^{2}}{2}=\frac{1}{2} \tan ^{2} x

I=I_{1}+I_{2}

    =\frac{1}{2} \tan ^{2} x-\log |\sec x|+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads