Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 50 Maths Textbook Solution.

 

Answers (1)

Answer:

I=\sin ^{-1}\left(\frac{x+1}{2}\right)+c

Given:

\int \frac{1}{\sqrt{3-2 x-x^{2}}} d x

Hint

 

Solution: 

\int \frac{1}{\sqrt{3-2 x-x^{2}}} d x

  I=\int \frac{1}{\sqrt{3+1-(x+1)^{2}}} d x

I=\int \frac{1}{\sqrt{4-(x+1)^{2}}} d x

I=\int \frac{d x}{\sqrt{(2)^{2}-(x+1)^{2}}}

t=x+1

d t=d x

=\int \frac{d t}{\sqrt{2^{2}-t^{2}}} \quad\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c\right.

=\sin ^{-1}\left(\frac{t}{2}\right)+c

I=\sin ^{-1}\left(\frac{x+1}{2}\right)+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads