Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 84  Maths Textbook Solution.

Answers (1)

Answer:

\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}+a^{2}}\right|+C

Hint:

You must know about integration of \int \sqrt{a^{2}+x^{2}}

Given:

\int \sqrt{a^{2}+x^{2}} d x

Solution:

I=\int 1_{I I} \cdot \sqrt{a_{1}^{2}+x^{2}} d x

=\sqrt{a^{2}+x^{2}} \int 1 d x-\int\left(\frac{d}{d x}\left(\sqrt{a^{2}+x^{2}}\right) \int 1 d x\right) d x

=\sqrt{a^{2}+x^{2}} \cdot x-\int \frac{1 \times 2 x}{2 \sqrt{a^{2}+x^{2}}} \cdot x d x

=\sqrt{a^{2}+x^{2}} \cdot x-\int\left(\frac{x^{2}+a^{2}-a^{2}}{\sqrt{a^{2}+x^{2}}}\right) d x

=x \sqrt{a^{2}+x^{2}}-\int \sqrt{a^{2}+x^{2}} d x+a^{2} \int \frac{1}{\sqrt{a^{2}+x^{2}}} d x

=x \sqrt{a^{2}+x^{2}}-I+a^{2} \int \frac{1}{\sqrt{a^{2}+x^{2}}} d x

\therefore 2 I=x \sqrt{a^{2}+x^{2}}+a^{2} \ln \left|x+\sqrt{x^{2}+a^{2}}\right|

\Rightarrow I=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}+a^{2}}\right|+C

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads