Get Answers to all your Questions

header-bg qa

Explain Solution R.D. Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise  Question 99 Maths Textbook Solution.

Answers (1)

Answer:

-\log \frac{(1-x)}{x}-\log |x|+\log |1-x|+c

Hint:

You must know about ILATE

Given:

\int\frac{(\log (1-x))}{x^{2}} d x

Solution:

\int\frac{(\log (1-x))}{x^{2}} d x

\left(\frac{1}{x^{2}}\right) \log \int(1-x) d x \quad \text { (ILATE) }

\log (1-x)\left(-\frac{1}{x}\right)\left(-\frac{1}{1-x}\right)\left(-\frac{1}{x}\right) d x

-\log \frac{(1-x)}{x}-\int \frac{1}{(1-x) x} d x

-\log \frac{(1-x)}{x}-\left(\int \frac{1}{x}+\frac{1}{(1-x)}\right) d x

-\log \frac{(1-x)}{x}-\log |x|+\log |1-x|+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads