Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 Chapter 18 Indefinite Integrals exercise 18.30 question 62

Answers (1)

Answer:

              \log \frac{x e^{x}}{1+x e^{x}}+c

Hint:

            To solve this integration, we use partial fraction method   

Given:

            \int \frac{x+1}{x\left(1+x e^{x}\right)} d x

Explanation:

Let

I=\int \frac{x+1}{x\left(1+x e^{x}\right)} d x

Put

1+x e^{x}=t

Differentiate w.r.t x

\begin{aligned} &x e^{x}+e^{x} d x=d t \\ &e^{x}(x+1) d x=d t \\ &(x+1) d x=\frac{1}{e^{x}} d t \\ &I=\int \frac{1}{x e^{x}(t)} d t \\ &I=\int \frac{1}{(t-1) t} d t \end{aligned}                               (1)

Let

\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}                       (2)

\begin{aligned} &1=A(t-1)+B(t) \\ &\text { At } t=1 \\ &1=B \\ &\text { At } t=0 \\ &\begin{array}{l} 1=-A \\ A=-1 \end{array} \end{aligned}

Put in (1) using (2)

\begin{aligned} &I=\int \frac{-1}{t} d t+\int \frac{1}{t-1} d t \\ &I=-\log t+\log (t-1)+C \\ &I=\log \frac{t-1}{t}+C \\ &I=\log \frac{x e^{x}}{1+x e^{x}}+C \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads