Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 18 Indefinite Integrals exercise 18.28 question 14

Answers (1)

Answer:-

The answer is
I=\frac{\log x}{2} \sqrt{(\log x)^{2}+16}+8 \log \left|\log x+\sqrt{(\log x)^{2}+16}\right|+c

Hints:-

\begin{aligned} &\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}

 

Given:-

 

I=\int \frac{\sqrt{(\log x)^{2}+16}}{x} d x

Solution:-

Let,
I=\int \frac{1}{x} \sqrt{16+(\log x)^{2}} d x

Let,  \log x=t

Differentiating both sides,

\Rightarrow \frac{1}{x} d x=d t

Substituting logx with t, we have

\begin{aligned} &I=\int \sqrt{t^{2}+16} d t \\\\ &I=\int \sqrt{t^{2}+4^{2}} d t \end{aligned}

 

As I match with the form

\begin{aligned} &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\\\ &I=\left\{\frac{t}{2} \sqrt{t^{2}+16}+\frac{16}{2} \log \left|t+\sqrt{t^{2}+16}\right|\right\}+c \end{aligned}

 

 

Putting the value of t back.

 

I=\frac{\log x}{2} \sqrt{(\log x)^{2}+16}+8 \log \left|\log x+\sqrt{(\log x)^{2}+16}\right|+c

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads