Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 Chapter 18 Indefinite Integrals exercise 18.30 question 11

Answers (1)

Answer:

            \log \left|\frac{(\sin x+2)^{4}}{(\sin x+1)^{2}}\right|+C

Hint:

            To solve this integration, we use partial fraction method   

Given:

            \int \frac{\sin 2 x}{(1+\sin x)(2+\sin x)} d x \\

Explanation:

Let

\begin{aligned} &I=\int \frac{\sin 2 x}{(1+\sin x)(2+\sin x)} d x \\ &I=\int \frac{2 \sin x \cos x}{(1+\sin x)(2+\sin x)} d x \quad[\sin 2 A=2 \sin A \cos A] \end{aligned}             

Let

\begin{aligned} &\sin x=y \\ &\cos x d x=d y \\ &I=\int \frac{2 y d y}{(1+y)(2+y)} \end{aligned}

\begin{aligned} &\frac{2 y}{(1+y)(2+y)}=\frac{A}{1+y}+\frac{B}{2+y} \\ &\frac{2 y}{(1+y)(2+y)}=\frac{A(2+y)+B(1+y)}{(1+y)(2+y)} \\ &2 y=(2 A+B)+y(A+B) \end{aligned}

Comparing coefficient

2=A+B                    (1)

2A+B=0                  (2)

Subtract equation (1) from equation (2)

A=-2

Equation (1)

2=-2+B\\B=4

Now

\begin{aligned} &\frac{2 y}{(y+1)(2+y)}=\frac{-2}{y+1}+\frac{4}{y+2} \\ &I=-2 \int \frac{1}{y+1} d y+4 \int \frac{1}{y+2} d y \\ &I=-2 \log |y+1|+4 \log |y+2|+C \end{aligned}

\begin{aligned} &I=\log \left|\frac{(y+2)^{4}}{(y+1)^{2}}\right|+C \\ &I=\log \left|\frac{(\sin x+2)^{4}}{(\sin x+1)^{2}}\right|+C\quad\quad\quad\quad \quad[\because y=\sin x] \end{aligned}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads