Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 Chapter 18 Indefinite Integrals exercise 18.30 question 30

Answers (1)

Answer:

            \frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+C

Hint:

            To solve this integration, we use partial fraction method   

Given:

            \int \frac{x}{(x-1)^{2}(x+2)} d x \\

Explanation:

Let

\begin{aligned} &I=\int \frac{x}{(x-1)^{2}(x+2)} d x \\ &\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+2} \\ &x=A(x-1)(x+2)+B(x+2)+C(x-1)^{2} \\ &x=x^{2}(A+C)+x(A+B-2 C)+(-2 A+2 B+C) \end{aligned}

Equating the similar terms

\begin{aligned} &A+C=0 \\ &A=-C \end{aligned}                         (1)

A+B-2C=1            (2)

\begin{aligned} &A+B+2 A=1 \\ &B+3 A=1 \end{aligned}                    (3)

\begin{aligned} &-2 A+2 B+C=0 \\ &-2 A+2 B-A=0 \\ &2 B-3 A=0 \end{aligned}                 (4)

Adding equation (3) and (4)

\begin{aligned} &3 B=1 \\ &B=\frac{1}{3} \end{aligned}

Equation (3)

\begin{aligned} &\frac{1}{3}+3 A=1 \\ &3 A=1-\frac{1}{3} \\ &3 A=\frac{2}{3} \\ &A=\frac{2}{9} \\ &C=\frac{-2}{9} \end{aligned}

\frac{x}{(x-1)^{2}(x+2)}=\frac{2}{9(x-1)}+\frac{1}{3(x-1)^{2}}+\frac{-2}{9(x+2)}

\begin{aligned} &I=\frac{2}{9} \int \frac{d x}{x-1}-\frac{2}{9} \int \frac{d x}{x+2}+\frac{1}{3} \int \frac{d x}{(x-1)^{2}} \\ &I=\frac{2}{9} \log |x-1|-\frac{2}{9} \log |x+2|-\frac{1}{3(x-1)}+C \\ &I=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+C \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads