Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 Chapter 18 Indefinite Integrals exercise 18.30 question 53

Answers (1)

Answer:

                \tan ^{-1} x-\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}+C

Hint:

            To solve this integration, we use partial fraction method   

Given:

            \int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x

Explanation:

Let

I=\int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x

Let x^{2}= y

\begin{aligned} &\frac{1}{\left(x^{2}+1\right)\left(x^{2}+2\right)}=\frac{1}{(y+1)(y+2)}=\frac{A}{y+1}+\frac{B}{y+2} \\ &\frac{1}{(y+1)(y+2)}=\frac{(y+2) A+(y+1) B}{(y+1)(y+2)} \\ &1=(y+2) A+(y+1) B \end{aligned}                                               (1)

Put y= -1

Equation (1)

\begin{aligned} &1=A+0 \\ &A=1 \end{aligned}

Put y= -2

Equation (1)

\begin{aligned} &1=0+(-1) B \\ &B=-1 \\ &\frac{1}{(y+1)(y+2)}=\frac{1}{y+2}-\frac{1}{y+2} \\ &\frac{1}{\left(x^{2}+1\right)\left(x^{2}+2\right)}=\frac{1}{x^{2}+1}-\frac{1}{x^{2}+2} \end{aligned}

 

\begin{aligned} &I=\int \frac{1}{x^{2}+1} d x-\int \frac{1}{x^{2}+2} d x \\ &I=\tan ^{-1} x-\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}+C \end{aligned}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads