Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 chapter Indefinite Integrals exercise 18.26 question 20 maths

Answers (1)

Answer:
The correct answer is e^{x} \tan ^{-1} x+c
Hint:

\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)+c

Given:

\int e^{x}\left(\tan ^{-1} x+\frac{1}{1+x^{2}}\right) d x

Solution:

        \begin{aligned} &\int e^{x}\left(\tan ^{-1} x+\frac{1}{1+x^{2}}\right) d x \\ &\text { Let } f(x)=\tan ^{-1} x \\ &\text { Then } f^{\prime}(x)=\frac{1}{1+x^{2}} \end{aligned}

        \begin{aligned} &\text { Now, } I=\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x \\ &I=e^{x} f(x)+c \\ &I=e^{x} \tan ^{-1} x+c \end{aligned}

So the correct answer is  e^{x} \tan ^{-1} x+c

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads