Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Indefinite Integrals exercise 18.8 question 28 maths

Answers (1)

Answer:

        \frac{1}{sin(b-a)}[log(\frac{sec(x+b)}{sec(x+a)})]+C

Hint:

        M\! ultipl\! y\; and\; divide\; by\; sin(b-a)

Given:

        \int \! \frac{1}{cos(x+a)cos(x+b)}dx                    ......(1)

Explanation:

M\! ultipl\! y\; and\; divide\; by\; sin(b-a)

From (1)

        =\frac{1}{sin(b-a)}\int \! \frac{sin(b-a)}{cos(x+a)cos(x+b)}dx

        =\frac{1}{sin(b-a)}\int \! \frac{sin[(x+b)-(x+a)]}{cos(x+a)cos(x+b)}dx        Add and subtract x in b-a

        =\frac{1}{sin(b-a)}\int \! \frac{sin(x+b)cos(x+a)-sin(x+a)cos(x+b)}{cos(x+a)cos(x+b)}dx

        =\frac{1}{sin(b-a)}[\int \! \frac{sin(x+b)}{cos(x+b)}dx-\int \! \frac{sin(x+a)}{cos(x+a)}dx]

        =\frac{1}{sin(b-a)}[\int \! tan(x+b)dx-\int \! tan(x-a)dx]

        =\frac{1}{sin(b-a)}[log\left | sec(x+b) \right |-log\left | sec(x+a) \right |]+C

        =\frac{1}{sin(b-a)}[log\left | \frac{sec(x+b)}{sec(x+a)} \right |]+C                [log\, a-log\, b=log\frac{a}{b}]

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads