Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Indefinite Integrals exercise 18.8 question 52 maths

Answers (1)

Answer:

        \frac{1}{4}[cos\, ecx-log\left | sec\, x+tan\, x \right |]+C

Hint:

        Put \; \; 1=sin^{2}x+cos^{2}x

Given:

        \int \! \frac{1}{cos3x-cos\, x}dx

Explanation:

        \int \! \frac{sin^{2}x+cos^{2}x}{cos3x-cos\, x}dx

        =\int \! \frac{sin^{2}x+cos^{2}x}{4cos^{3}x-3cos\, x-cos\, x}dx            cos3x=4cos^{3}x-3cos\, x

        =\int \! \frac{sin^{2}x+cos^{2}x}{4cos^{3}x-4cos\, x}dx

        =\int \! \frac{sin^{2}x+cos^{2}x}{4cos\, x(cos^{2}x-1)}dx

        =-\int \! \frac{sin^{2}x+cos^{2}x}{4cos\, x(sin^{2}x)}dx                sin^{2}x+cos^{2}x=1

        =-\int \! \frac{sin^{2}x}{4cos\, x\, sin^{2}x}dx+(-\int \! \frac{cos^{2}x}{4cos\, x\, sin^{2}x}dx)

        =-\frac{1}{4}\int \! \frac{1}{cos\, x}dx-\frac{1}{4}\int \! \frac{cos\, x}{ sin^{2}x}dx

        =-\frac{1}{4}\int \! sec\, xdx-\frac{1}{4}\int \! cot\, x\, cos\, e\, cxdx

        =-\frac{1}{4}log\left | sec\, x+tan\, x \right |-\frac{1}{4}(-cos\, e\, cx)+C

        =\frac{1}{4}[cos\, ecx-log\left | sec\, x+tan\, x \right |]+C

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads