Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise 18.21 Question 15 Maths Textbook Solution.

Answers (1)

Answer: 2 \sqrt{x^{2}+4 x+3}-3 \log \left|x+2+\sqrt{x^{2}+4 x+3}\right|+c

Given: \int \frac{2 x+1}{\sqrt{x^{2}+4 x+3}} d x

Hint: Simplify the given function

Solution:

          \begin{aligned} &I=\int \frac{2 x+1}{\sqrt{x^{2}+4 x+3}} d x \\ &I=\int \frac{2 x+4-3}{\sqrt{x^{2}+4 x+3}} d x \\ &I=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x-\int \frac{3}{\sqrt{x^{2}+4 x+3}} d x \\ &I=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x-\int \frac{3}{\sqrt{x^{2}+4 x+4-4+3}} d x \\ &I=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x-\int \frac{3}{\sqrt{(x+2)^{2}-1}} d x \end{aligned}

         \begin{aligned} &I=I_{1}-3 \log \left|x+2+\sqrt{x^{2}+4 x+3}\right|+c \quad \ldots\left[\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c\right] \\ &I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x \end{aligned}

       Let,

       \begin{aligned} &x^{2}+4 x+3=y \\ &(2 x+4) d x=d y \\ &I_{1}=\int \frac{d y}{\sqrt{y}}=\frac{\sqrt{y}}{\frac{1}{2}}+c \\ &I_{1}=2 \sqrt{x^{2}+4 x+3}+c \\ &I=2 \sqrt{x^{2}+4 x+3}-3 \log \left|x+2+\sqrt{x^{2}+4 x+3}\right|+c \end{aligned}

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads