Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise 18.25 Question 34 Maths Textbook Solution.

Answers (1)

Answer: xe^{x}\left [ log\left ( xe^{x} \right )-1 \right ]+c

Hint: t=x.e^{x}

Given: \int \left ( x+1 \right )e^{x}log\left ( x.e^{x} \right )dx

Solution:

            Now,Let

                           t=x.e^{x}

                           dt=\left ( x.e^{x}+e^{x}1 \right )dx

                           dt=\left ( x+1 \right )e^{x}dx

            \begin{aligned} &\therefore I=\int \log t d t \\ &I=\int \log (t) \cdot 1 d t \\ &I=\log t \int 1 d t-\int \frac{1}{t} t d t \\ &I=t \log t-\int d t \end{aligned}

           I=tlog\: t-t+c

           =t(log\: t-1)+c

            =xe^{x}\left [ log\left ( xe^{x} \right )-1 \right ]+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads