Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Multiple Choice Questions Question 12 Maths Textbook Solution.

Answers (1)

Answer:

None of these

Given:

\int|x|^{3} d x

Hint:

Using \int x^{n} d x

Explanation:

Let I=\int|x|^{3} d x

Here two cases arise.

\begin{aligned} &I=\left\{-x^{3}, x<0 ; x^{3}, x \geq 0\right.\\ &\therefore \text { Case I, when } x<0 \end{aligned}

\begin{aligned} &I=\int_{4}-x^{3} d x \\ &=\frac{-x^{4}}{4}+C \end{aligned}                                                            \left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right]

\text { Case II, when } x \geq 0

\begin{aligned} &I=\int_{4} x^{3} d x \\ &=\frac{x^{4}}{4}+C \end{aligned}                                                                    \left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right]

Combining these two, we get

I=\pm \frac{x^{4}}{4}+C

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads