Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise Question 39 Maths Textbook Solution.

Answers (1)

Answer:

\sin x+\frac{\sin ^{5} x}{5}-\frac{2 \sin ^{8} x}{3}+c

Given:

\int \cos ^{5} x d x

Hint:

To solve the statement we have to convert cos term in sin

Solution:

\int \cos ^{4} x \cos x d x

  I=\left(\cos ^{2} x\right)^{2} \cos x d x \quad\left[\because \cos ^{2} x=1-\sin ^{2} x\right]

I=\int\left(1-\sin ^{2} x\right)^{2} \cos x d x

\sin x=t, \cos x d x=d t

I=\int\left(1-t^{2}\right)^{2} d t

I=\int\left(1+t^{4}-2 t^{2}\right) d t

I=t+\frac{t^{5}}{5}-\frac{2 t^{3}}{3}+c

I=\sin x+\frac{\sin ^{5} x}{5}-\frac{2 \sin ^{3} x}{3}+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads