Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise Question 41 Maths Textbook Solution.

Answers (1)

Answer:

\tan ^{-1}\left(\tan ^{2} x\right)+c

Given:

\int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x

Hint:

In this statement we have to convert sin in term of tan.

Solution: 

I=\frac{2 \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x

I=\frac{2 \sin x \cos x}{\cos ^{4} x\left(\tan ^{4} x+1\right)} d x

I=2 \int \frac{\tan x \sec ^{2} x}{\tan ^{4} x+1} d x

I=2 \int \frac{\tan x \sec ^{2} x}{\tan ^{4} x+1} d x                        \left[\because \operatorname{let} \tan x=t, \sec ^{2} x d x=d t\right]

I=2 \int \frac{t d t}{t^{4}+1}

I=\int \frac{d y}{y^{2}+1}\left[\because \mathrm{t}^{2}=\mathrm{y}, 2 \mathrm{tdt}=\mathrm{dy}\right]

    =\tan ^{-1} y+c

    =\tan ^{-1}\left(t^{2}\right)+c

     =\tan ^{-1}\left(\tan ^{2} x\right)+c

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads