Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise Question 48 Maths Textbook Solution.

Answers (1)

Answer:

I=-\ln \left|(\cos x-1)+\sqrt{\cos ^{2} x-2 \cos x+3}\right|+c

Given:

\int \frac{\sin x}{\sqrt{\cos ^{2} x-2 \cos x-3}} d x

Hint:

To solve this statement we have to use standard formula.

Solution: 

I=\int \frac{\sin x}{\sqrt{\cos ^{2} x-2 \cos x-3}} d x                                [\because \cos x=t, d t=-\sin x d x=>\sin x d x=-d t]

    I=-\int \frac{d t}{\sqrt{t^{2}-2 t-3}}

I=-\int \frac{d t}{\sqrt{(t-1)^{2}-1-3}}

 

I=-\int \frac{d t}{\sqrt{(t-1)^{2}-4}}

I=-\int \frac{d t}{\sqrt{(t-1)^{2}-(2)^{2}}}                                    \left[\because \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\ln \left|x+\sqrt{x^{2}-a^{2}}\right|+c\right.

I=-\ln \mid(t-1)+\sqrt{(t-1)^{2}-(2)^{2} \mid+} c

I=-\ln \left|(t-1)+\sqrt{t^{2}-2 t-3}\right|+c

I=-\ln \left|(\cos x-1)+\sqrt{\cos ^{2} x-2 \cos x+3}\right|+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads