Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise Question 61 Maths Textbook Solution.

Answers (1)

Answer:

I=\frac{1}{4} \ln \left|x^{4}+\sqrt{x^{8}+4}\right|+c

Hint :

 To solve this given statement split the x? term to (x?)² then put x? equal to t.

Given:

\int \frac{x^{8}}{\sqrt{x^{8}+4}} d x

Solution:

I=\int \frac{x^{8}}{\sqrt{x^{8}+4}} d x

  I=\int \frac{x^{3}}{\sqrt{\left(x^{4}\right)^{2}+4}} d x

I=\int \frac{\frac{1}{4} d t}{\sqrt{t^{2}+4}}                                                    \left[\because x^{4}=t, d t=4 x^{3} d x, x^{3} d x=\frac{d t}{4}\right]

I=\frac{1}{4} \int \frac{d t}{\sqrt{t^{2}+2^{2}}}

I=\frac{1}{4} \ln \left|t+\sqrt{t^{2}+4}\right|+c

I=\frac{1}{4} \ln \left|x^{4}+\sqrt{x^{8}+4}\right|+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads