Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Revision Exercise Question 90 Maths Textbook Solution.

Answers (1)

Answer:

\frac{\left(4 x^{2}+5 x+6\right)^{\frac{3}{2}}}{6}+\frac{7}{8} \int \frac{x}{2} \sqrt{4 x^{2}+5 x+6}-\frac{1}{8} \ln \left|2 x+\sqrt{4 x^{2}+5 x+6}\right|+c

Hint:

You must have to know about integration method.

Given:

\int(2 x+3) \sqrt{4 x^{2}+5 x+6} d x

Solution:

\int(2 x+3) \sqrt{4 x^{2}+5 x+6} d x

\frac{1}{4} \int(8 x+5+7) \sqrt{4 x^{2}+5 x+6} d x

\frac{1}{4} \int(8 x+5) \sqrt{4 x^{2}+5 x+6} d x+7 \int \sqrt{4 x^{2}+5 x+6} d x

\text { Let } 4 x^{2}+5 x+6=t

\frac{\frac{1}{4}\left(t^{\frac{1}{2}}+1\right)}{\frac{3}{2}}+7 \int \sqrt{\left(2 x+\frac{5}{2}\right)^{2}}+\left(6-\frac{25}{4}\right) d x

\frac{1}{4}\left(\frac{2\left(\sqrt{4 x^{2}+5 x+6}\right)}{3} \cdot\left(4 x^{2}+5 x+6\right)+7 \int \sqrt{\left(2 x+\frac{5}{2}\right)^{2}}+\frac{1}{4} d x\right.

\int \frac{\left(4 x^{2}+5 x+6\right)^{\frac{3}{2}}}{6}+\frac{7}{4} \sqrt{\left(2 x+\frac{5}{2}\right)^{2}}+\left(\frac{1}{2}\right)^{2} d x

\int \frac{\left(4 x^{2}+5 x+6\right)^{\frac{3}{2}}}{6}+\frac{7}{4} \sqrt{\left(2 x+\frac{5}{2}\right)^{2}}+\left(\frac{1}{2}\right)^{2} d x

\frac{\left(4 x^{2}+5 x+6\right)^{\frac{3}{2}}}{6}+\frac{7}{4} \sqrt{\left(2 x+\frac{5}{2}\right)^{2}\left(-\frac{1}{2}\right)^{2}}-\frac{1}{4} \times \frac{1}{2} \ln \left|2 x+\sqrt{4 x^{2}+5 x+6}\right|+c

\frac{\left(4 x^{2}+5 x+6\right)^{\frac{3}{2}}}{6}+\frac{7}{8} \int \frac{x}{2} \sqrt{4 x^{2}+5 x+6}-\frac{1}{8} \ln \left|2 x+\sqrt{4 x^{2}+5 x+6}\right|+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads