Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 18 Indefiite Integrals Excercise Fill in the Blanks Question 10

Answers (1)

Answer:

x+\log \left|\frac{x-1}{x+1}\right|+c

Hint:

To solve, this we use partial fraction.

Solution:

\begin{aligned} &I=\int \frac{x^{2}+1}{x^{2}-1} d x \\ &I=\int \frac{(x-1)^{2}+2 x}{x^{2}-1} d x \quad\quad\quad\quad\quad\quad\left[(a-b)^{2}=a^{2}+b^{2}-2 a b\right] \end{aligned}

\begin{aligned} &I=\int \frac{(x-1)^{2}}{x^{2}-1} d x+\int \frac{2 x}{x^{2}-1} d x \\ &I=\int \frac{x-1}{x+1} d x+\int \frac{2 x}{x^{2}-1} d x \end{aligned}

 

\begin{aligned} &I=\int \frac{x+1-2}{x+1} d x+\int \frac{2 x}{x^{2}-1} d x \\ &I=\int d x-2 \int \frac{1}{x+1} d x+\int \frac{2 x}{x^{2}-1} d x \\\ &I=x-2 \log |x+1|+\log \left|x^{2}-1\right|+c \end{aligned}

\begin{aligned} &I=x+\log \left|\frac{x^{2}-1}{(x+1)^{2}}\right|+c \\ &I=x+\log \left|\frac{x-1}{x+1}\right|+c \end{aligned}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads