Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 18 Indefinite Integrals Excercise Very Short Answers Question 26

Answers (1)

Answer:  \frac{\log\left | 3+a^{x} \right |}{\ln \left ( a \right )}+c

Hints: You must know about the integral rules of x

Given: \int \frac{a^{x}}{3+a^{x}}dx

Solution:

I=\int \frac{a^{x}}{3+a^{x}}dx

Lett= 3+ a^{x}.         and differentiate both sides

d t=0+a^{x} \ln (a) d x \quad\quad \quad \quad \quad \quad \quad \quad{\left[\frac{d}{d x} a^{x}=a^{x} \ln |a|\right]} \\

I=\int \frac{d t}{\ln (a) t} \quad \quad \quad \quad \quad \quad \quad \quad {\left[\int \frac{1}{x} d x=\log x+c\right]}

 \begin{aligned} &=\frac{1}{\ln a} \int \frac{d t}{t} \\ &=\frac{1}{\ln a} \log |t|+c \\ &=\frac{\log \left|3+a^{x}\right|}{\ln (a)}+c \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads