Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Indefinite Integrals exercise 18.26 question 11

Answers (1)

Answer:
The correct answer is e^{x} \cot (2 x)+c
Hint:

\begin{aligned} i.\; \; \; \; \; &\cos 2 a=1-\sin ^{2} A \\ ii.\; \; \; \; \; &\sin 2 a=2 \sin A \cos A \end{aligned}

Given:  \int e^{x}\left(\frac{\sin 4 x-4}{1-\cos 4 x}\right) d x

Solution:

        I=\int e^{x}\left(\frac{\sin 4 x-4}{1-\cos 4 x}\right) d x

        \mathrm{I}=\int e^{x}\left(\frac{2 \sin (2 x) \cos (2 x)-4}{2 \sin ^{2}(2 x)}\right) d x \quad \therefore\left[\cos 2 a=1-\sin ^{2} A, \sin 2 a=2 \sin A \cos A\right]

        \mathrm{I}=\int e^{x}\left(\frac{2 \sin (2 x) \cos (2 x)}{2 \sin ^{2}(2 x)}-\frac{4}{2 \sin ^{2}(2 x)}\right) d x

            \Rightarrow \int e^{x}\left(\cot (2 x)-2 \operatorname{cosec}^{2}(2 x)\right) d x

\text { Where } f(x)=\cot (2 x) \text { and } f^{\prime}(x)=-\operatorname{2cosec}^{2}(2 x)

        \begin{aligned} &I=\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x \\ &=e^{x} f(x)+c \\ &=e^{x} \cot (2 x)+c \end{aligned}

So, the correct answer is e^{x} \cot (2 x)+c

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads