Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Indefinite Integrals exercise 18.26 question 15

Answers (1)

Answer:
The correct answer is \log x\; e^{x}+c
Given:

\int e^{x}\left(\log x+\frac{1}{x}\right) d x

Solution:

        I=\int e^{x}\left(\log x+\frac{1}{x}\right) d x

            =\int e^{x} \log x \; d x+\int e^{x} \cdot \frac{1}{x} d x

On integration by parts,

            \begin{aligned} &\log x \; e^{x}-\int \frac{1}{x} \cdot e^{x} d x+\int e^{x} \cdot \frac{1}{x} d x \\ &=\log x \; e^{x}+c \end{aligned}

So, the correct answer is \log x\; e^{x}+c

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads