Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Indefinite Integrals exercise 18.9 question 59

Answers (1)

Answer: \frac{1}{2} e^{x^{2}}+c

Hint: Use substitution method to solve this integral

Given: \int x\: e^{x^{2}} d x

Solution:

        \text { Let } I=\int x\: e^{x^{2}} d x

        \begin{aligned} &\text { Put } x^{2}=t \Rightarrow 2 x d x=d t \Rightarrow d x=\frac{1}{2 x} d t \\ &\text { Then, } I=\int x \cdot e^{t} \cdot \frac{d t}{2 x}=\frac{1}{2} \int e^{t} d t=\frac{1}{2} e^{t}+c \end{aligned}                    \left[\because \int e^{x} d x=e^{x}+c\right]

                        =\frac{1}{2} e^{x^{2}}+c                                    \left[\because t=x^{2}\right]

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads