Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise Multiple Choice Questions Question 7 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{16}

Given:

\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=a \cos 8 x+C

Hint

Using \int \sin x d x

Explanation:

Let I=\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x

=\int \frac{2 \cos ^{2} 4 x-1+1}{\frac{\sin 2 x}{\cos 2 x}-\frac{\cos 2 x}{\sin 2 x}} d x \quad\left\[\because 2 \cos ^{2} x=1+\cos 2 x ; \tan x=\frac{\sin x}{\cos x} ; \cot x=\frac{\cos x}{\sin x}\right]

=\int \frac{2 \cos ^{2} 4 x \cdot \sin 2 x \cos 2 x}{\sin ^{2} 2 x-\cos ^{2} 2 x} d x

=\int \frac{\cos ^{2} 4 x \sin 4 x}{-\cos 4 x} d x                            \left[\because \cos ^{2} x-\sin ^{2} x=\cos 2 x\right]

=-\int \cos 4 x \sin 4 x d x

=-\frac{1}{2} \int \sin 8 x d x                                    [\because \sin 2 x=2 \sin x \cos x]

=-\frac{1}{2} \int \sin 8 x d x                                    [\because \sin 2 x=2 \sin x \cos x]

\begin{aligned} &=-\frac{1}{2}\left(-\frac{\cos 8 x}{8}\right)+C \\ &I=\frac{\cos 8 x}{16}+C \end{aligned}

According to given,

\begin{aligned} &I=a \cos 8 x+C \\ &\because a \cos 8 x+C=\frac{1}{16} \cos 8 x+C \\ &\therefore a=\frac{1}{16} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads