Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise  Revision Exercise Question 32 Maths Textbbok Solution.

Answers (1)

Answer:

-\frac{1}{4} \cot ^{4} x+\frac{1}{2} \cot ^{2} x+\log |\sin x|+c

Given:

\int \cot ^{5} x d x

Hint:

To solve the given statement we will split into \cot ^{3} x \cot ^{2} x

Solution: 

   \int \cot ^{3} x \cot ^{2} x d x

I=\int \cot ^{3} x\left(\operatorname{cosec}^{2} x-1\right) d x

    =\int \cot ^{3} x \operatorname{cosec}^{2} x d x-\int \cot x\left(\operatorname{cosec}^{2} x-1\right) d x

    =\int \cot ^{3} x \operatorname{cosec}^{2} x d x-\int \cot x \operatorname{cosec}^{2} x d x+\int \cot x d x

    =-\int p^{3} d p+\int p d p+\int \cot x d x \quad[\because \cot x=p, \operatorname{cosec} x d x=d p]

    =-\frac{p^{4}}{4}+\frac{p^{2}}{2}+\log \mid(\sin x)+c

     =-\frac{1}{4} \cot ^{4} x+\frac{1}{2} \cot ^{2} x+\log |\sin x|+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads