Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise  Revision Exercise Question 33 Maths Textbbok Solution.

Answers (1)

Answer:

\log |x-1|-\frac{2}{(x-1)}-\frac{1}{2(x-1)^{2}}+c

Given:

\int \frac{x^{2}}{(x-1)^{3}} d x

Hint:

To solve the statement we will use partial fractions

Solution:

Let \frac{x^{2}}{(x-1)^{3}} d x=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}

x^{2}=A(x-1)^{2}+B(x-1)+c

x^{2}=x^{2} A+x(2 A+B)+A+B+C

On equating the coeffiecients of x^{2}: A=1

On equating the coeffiecients of x: B=-2

On equating the constants :C=1

Thus,\int \frac{x^{2}}{(x-1)^{3}} d x=\int \frac{1}{(x-1)} d x+\int \frac{-2}{(x-1)^{2}} d x+\int \frac{1}{(x-1)^{3}} d x

 

=\log |x-1|+\frac{2(x-1)^{-2+1}}{-2+1}-\frac{1}{2(x-1)^{2}}+c

=\log |x-1|-\frac{2}{(x-1)}-\frac{1}{2(x-1)^{2}}+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads