Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise  Revision Exercise Question 35 Maths Textbbok Solution.

Answers (1)

Answer:

\frac{1}{2}\left|\log \left(1+x^{2}\right)\right|+\frac{1}{2\left(1+x^{2}\right)}+c

Given:

\int \frac{x^{3}}{\left(1+x^{2}\right)^{2}} d x

Hint:

To solve the statement we will suppose x in term of t.

Solution: 

\int \frac{x^{2} x}{\left(1+x^{2}\right)^{2}} d x

Let 1+x^{2}=t

2 x=\frac{d t}{d x}

x d x=\frac{d t}{2}

I=\frac{1}{2} \int \frac{t-1}{t^{2}} d t

I=\frac{1}{2} \int \frac{t}{t^{2}} d t-\int \frac{1}{t^{2}} d t

I=\frac{1}{2} \int \frac{1}{t} d t-\int t^{-2} d t

I=\frac{1}{2} \log t-\frac{1}{2} \frac{\left(t^{-2+1}\right)}{-2+1}+c

I=\frac{1}{2}\left|\log \left(1+x^{2}\right)\right|+\frac{1}{2\left(1+x^{2}\right)}+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads