Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 18 Indefinite Integrals Exercise  Revision Exercise Question 36 Maths Textbbok Solution.

Answers (1)

Answer:

\frac{\sin ^{6} x^{2}}{12}+c

Given:

\int x \sin ^{5} x^{2} \cos x^{2} d x

Hint:

To solve this statement we have to suppose or assume sin x and  cos x as v and dv.

Solution: 

I=\int x \sin ^{5} x^{2} \cos x^{2} d x

   I=\frac{1}{2} \int \sin ^{5} t costdt \quad\left[\because x^{2}=t, 2 x d x=d t, x d x=\frac{d t}{2}\right]

I=\frac{1}{2} \int v^{5} d v                                        [\because \sin t=v, \cos t d t=d v]

I=\frac{1}{2} \frac{v^{6}}{6}+c

I=\frac{1}{2} \frac{\left(\sin ^{6} t\right)}{6}+c

I=\frac{\sin ^{6} x^{2}}{12}+c

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads