Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 18 Indefinite Integrals Exercise18.31 Question 1 Maths Textbook Solution.

Answers (1)

Answer: The required value of the integral is,

I=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{3} x}\right)+c

Hint: Use the formula \int \frac{1}{x^{2}+a^{2}}dx=\frac{1}{a}\tan ^{-1}\frac{x}{a}+c

Given:

\int \frac{\left ( x^{2}+1 \right )}{\left ( x^{4}+x^{2}+1 \right )}dx

Solution: The equation can be written as

I=\int \frac{1+\frac{1}{x^{2}}}{x^{2}+1+\frac{1}{x^{2}}} d x      [ dividing x^{2} both denominator and denominator]

=\int \frac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x^{2}}\right)^{2}+3} d x      [Making the perfect square as (a+b)^{2} ]

Let x-\frac{1}{x}=t

Now differentiating both side w.r.t t

\begin{aligned} \left(1+\frac{1}{x^{2}}\right) &=d t \\ I &=\int \frac{1}{t^{2}+3} d t \end{aligned}

 On using standard identity we get, I=\frac{1}{\sqrt{3}}\left ( \frac{t}{\sqrt{3}} \right )+c

Substituting t=x-\frac{1}{x} we get,

\begin{aligned} &I=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\left(x-\frac{1}{x}\right)}{\sqrt{3}}\right)+c \\ &I=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{3} x}\right)+c \end{aligned}

So, the required value of the integration is,

I=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{3} x}\right)+c

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads