Get Answers to all your Questions

header-bg qa

Provide Solutio for RD Sharma Class 12 Chapter Indefinite Integrals Exercise 18.12 Question 3

Answers (1)

Answer:

Hint: Use substitution method to solve this integral

Given:  \int \cos ^{5} x d x

Solution: Let   I=\int \cos ^{5} x d x

Re-writing,   I=\int \cos ^{5} x d x
\begin{aligned} I &=\int \cos ^{3} x \cos ^{2} x d x \\ &=\int \cos ^{3} x\left(1-\sin ^{2} x\right) d x\quad\quad\quad\quad\quad\quad\quad\left[\because \sin ^{2} x+\cos ^{2} x=1\right] \end{aligned}
    \begin{aligned} &=\int\left(\cos ^{3} x-\cos ^{3} x \sin ^{2} x\right) d x \\ &=\int \cos ^{3} x d x-\int \cos ^{3} x \sin ^{2} x d x \\ &=\int \cos ^{2} x \cos x d x-\int \cos ^{2} x \cos x \sin ^{2} x d x \end{aligned}
    \begin{aligned} &=\int \cos x\left(1-\sin ^{2} x\right) d x-\int\left(1-\sin ^{2} x\right) \sin ^{2} x \cos x d x \quad \quad \quad \quad \quad \quad \quad\left[\because \cos ^{2} x=1-\sin ^{2} x\right] \\ &=\int \cos x d x-\int \cos x \sin ^{2} x d x-\int \sin ^{2} x \cos x d x+\int \sin ^{4} x \cos x d x \\ &=\int \cos x d x-2 \int \sin ^{2} x \cos x d x+\int \sin ^{4} x \cos x d x \end{aligned}

Substitute \sin x=t\Rightarrow \cos xdx=dt in second and third integral, then
I =\int \cos x d x-2 \int t^{2} d t+\int t^{4} d t \quad\quad\quad\quad\quad\quad\left [ \because \int \cos xdx=\sin x+c \right ]
\begin{aligned} &=\sin x-2 \frac{t^{2+1}}{2+1}+\frac{t^{4+1}}{4+1}+C \\ &=\sin x-2 \frac{t^{3}}{3}+\frac{t^{5}}{5}+C \\ &=\sin x-2 \frac{\sin ^{3} x}{3}+\frac{\sin ^{5} x}{5}+C \end{aligned}

                                                                                     

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads