Get Answers to all your Questions

header-bg qa

Provide Solution For R.D. Sharma Maths Class 12 Chapter 18 Indefinite Integrals Exercise Multiple Choice Questions Question 22 Maths Textbook Solution.

Answers (1)

Answer:

\tan \left(x e^{x}\right)+C

Given:

\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x

Hint:

You must know about the \int \sec ^{2} x d x.

Explanation:

Let \mathrm{I}=\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x

         =\int \frac{d t}{\cos ^{2} t}                                                            \text { [ Put } \left.x e^{x}=t \Rightarrow\left(x e^{x}+e^{x}(1)\right) d x=d t \Rightarrow e^{x}(x+1) d x=d t\right]

         =\int \sec ^{2} t d t                                                              \left[\because \sec \theta=\frac{1}{\cos \theta}\right]          

        \begin{aligned} &=\tan t+C \\ &=\tan \left(x e^{x}\right)+C \end{aligned}

Hence,\int \frac{e^{x}(1+x) d x}{\cos ^{2}\left(x e^{x}\right)}=\tan \left(x e^{x}\right)+C

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads