Get Answers to all your Questions

header-bg qa

Provide Solution For R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 12 Maths Textbook Solution.

Answers (1)

Answer:

\frac{\sin 3 x}{3}-\frac{\sin ^{8} 3 x}{9}+c

Given:

\int \cos ^{3} 3 x d x

Hint:

Let the term and derivate it and then integrate it.

Solution:   

\int \cos ^{3} 3 x d x

       =\int \cos ^{2} 3 x \cos 3 x d x

   =\int\left(1-\sin ^{2} 3 x\right) \cos 3 x d x \quad\left[\because \cos ^{2} x+\sin ^{2} x=1\right]

   now,let \mathrm{u}=\sin 3 \mathrm{x}

   Differentiate w.r.t x

    \frac{\mathrm{du}}{\mathrm{dx}}=3 \cos 3 \mathrm{x}

   d u=3 \cos 3 x d x

   Now,

   \frac{1}{3} \int 3\left(1-\sin ^{2} 3 x\right) \cos 3 x d x

 =\frac{1}{3} \int 1-u^{2} d u \quad(p u t u \& d u)

 =\frac{1}{3} \int d u-\frac{1}{3} \int u^{2} d u

 =\frac{1}{3} u-\frac{1}{3} \times \int u^{2} d u

 =\frac{1}{3} \sin 3 x-\frac{\sin ^{8} 3 x}{9}+c

    

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads