Get Answers to all your Questions

header-bg qa

Provide Solution For R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 13 Maths Textbook Solution.

Answers (1)

Answer:

\frac{1}{b^{2}} \log \left(a^{2}+b^{2} \sin ^{2} x\right)+c

Given:

\int \frac{\sin 2 x}{a^{2}+b^{2} \sin ^{2} x} d x

Hint:

Let the denominator and then integrate the equation.

Solution:   

\int \frac{\sin 2 x}{a^{2}+b^{2} \sin ^{2} x} d x

  let u=a^{2}+b^{2} \sin ^{2} x

differentiate it with respect to \mathrm{x}

\frac{d u}{d x}=2 b^{2} \sin x \cos x

\frac{d u}{d x}=b^{2} \sin 2 x

\frac{1}{b^{2}} d u=\sin 2 x d x

now

I=\frac{1}{b^{2}} \int \frac{1}{u} d u \quad($ put $u \& d u)

 =\frac{1}{b^{2}} \log |u|+c

=\frac{1}{b^{2}} \log \left|a^{2}+b^{2} \sin ^{2} x\right|+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads