Get Answers to all your Questions

header-bg qa

Provide Solution For R.D.Sharma Maths Class 12 Chapter 18  Indefinite Integrals Exercise  Revision Exercise Question 15 Maths Textbook Solution.

Answers (1)

Answer:

\frac{\left(\sin ^{-1} x\right)^{4}}{4}+c

Given:

\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x

Hint:

We must know about substitution formula to integrate.

Solution:   

\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x

Let \mathrm{u}=\sin ^{-1} \mathrm{x}

Differentiate it with respect to x

\frac{d u}{d x}=\frac{1}{\sqrt{1-x^{2}}}

d u=\frac{1}{\sqrt{1-x^{2}}} d x

now, \int u^{3} d u                                (p u t u \& d u)

=\frac{u^{4}}{4}+c

\frac{\left(\sin ^{-1} x\right)^{4}}{4}+c

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads